Logo Reaper y otras yerbas


Procesadores de dinámica:

Normalmente cuando hablamos de dinámica, a no ser que se indique otra cosa, nos estaremos refiriendo siempre a niveles en decibelios. La dinámica de una señal se puede descomponer básicamente en tres estados.


Hay que tener en cuenta que una señal de audio es tan solo una representación eléctrica de una señal sonora, y por tanto la dinámica de una señal de audio reflejará las características del sonido de la fuente que la generó. De esta forma es muy fácil imaginarse como son las dinámicas de una señal simplemente basándonos en el sonido de los instrumentos que la provocaron. Por ejemplo, podemos observar dinámicas muy distintas entre instrumentos como un plato crash de una batería y una conga. La conga tendrá un ataque muy ràpido y un sustain y decay muy cortos, mientras que un crash tendrá un ataque bastante lento y un sustain y una caída muy lenta. Eso es lo que realmente significa la dinámica de una señal. Por encima de todo nuestro oído nos va a dar una idea muy aproximada de como modificar dicha dinámica hasta que consigamos llevarnos el sonido de esa señal al terreno donde queramos. Es muy importante que nos familiaricemos bien con la dinámica de los diferentes instrumentos con el fin de que sepamos cómo podemos modificarlos para poder modelar el sonido a nuestro gusto. Mucha gente se guía únicamente por si suena bien o si suena mal, y a veces se acierta y otras muchas veces no se da en el clavo. Siempre el conocimiento de lo que estamos haciendo nos va a hacer ahorrar mucho tiempo y conseguir mucha más calidad en nuestras mezclas, ya que tendremos todos los procesos bajo control, y no serán ellos los que nos controlen a nosotros. Cuando hablemos de rango o margen dinámico nos estaremos refiriendo a la diferencia entre dos niveles. Por ejemplo si hablamos de que una señal tiene un rango dinámico de 30dB, estaremos diciendo que entre su valor máximo y su valor mínimo hay una separación (diferencia) de 30dB.


Compuertas de ruido:

Uno de los procesos de dinámica más sencillos pero al que en muchas ocasiones no se le presta la suficiente atención, es la eliminación de las partes de la señal que no nos interesan o el refuerzo de las que realmente son importantes. Hay que decir que este proceso cobra mucha importancia en estilos musicales modernos (rock, pop, heavy...) y pasa casi sin usar en estilos como la música clásica, jazz... La mayoría de producciones de música moderna usan técnicas de microfonía cercana en el proceso de grabación. Cuando tengamos tomas microfónicas de varios elementos grabadas a la vez, vamos a tener sonidos indeseados provenientes de otros elementos en cada micrófono. Aparte de esto debemos de tener en cuenta que el sonido de las producciones de música moderna suele basarse en un sonido en el que todos los elementos se escuchan claramente (aunque estén bien empastados con el resto) y muy al frente en el campo imaginario generado por los dos monitores. Esto obliga a que cada elemento sea tratado totalmente (o casi totalmente) como un elemento independiente sin que deba tener demasiada influencia de otros elementos. Sin embargo en estilos como el jazz, en los que muchas veces se usan técnicas de microfonía cercana similares a las usadas en estilos como el pop, esta necesidad de aislar elementos es mucho menor. De hecho algunos discos de jazz mezclados por manos inexpertas, habituadas más a mezcla de pop y rock, presentan graves problemas por la mala utilización de puertas y expansores. Lo que se intenta en una mezcla típica de jazz es que el oyente imagine que los músicos estan tocando en directo en su salón, prestándose mucha más atención al conjunto que a los elementos individuales. En una producción tipo pop/rock, por ejemplo, no hace falta decir que en el 99% de los casos al escuchar el disco e imaginarnos luego como sonaría eso en el local de ensayo del grupo en cuestión, nos damos cuenta que muy poco tiene que ver lo que escuchamos en nuestro salón con lo que tendríamos en realidad. Esto es algo que debemos de tener muy en cuenta, ya que aunque los procesos de dinámica realizados para eliminar ruido y aislar instrumentos son muy sencillos de aplicar y de entender, hay que decidir hasta que punto estamos dispuestos a aplicarlos en un tema musical. Si nos pasamos procesando la cosa sonará muy antinatural, y si no llegamos los elementos no estarán lo suficientemente aislados y la mezcla sonará difusa y poco definida.
Las compuertas de ruido básicamente lo que hacen es eliminar todo sonido cuyo nivel no supere lo marcado en el threshold y dejar pasar sin ninguna modificación todo sonido que tenga un nivel más alto del marcado en el threshold. Este proceso de puerteo al 100%, es decir, o el 100% se elimina o el 100% pasa, es muy drástico, y produce un sonido muy antinatural según que fuentes. Este puerteo se suele usar en cajas y bombos de estilos cuya batería sea muy percusiva como por ejemplo rock, metal... y no siempre en todas lasocasiones. Además, en un tema musical este puerteo en la caja y el bombo puede funcionar correctamente, pero tener otras partes en el tema mucho más suaves en las que se haga muy patente ese sonido antinatural. En ambos casos se hace necesaria la automatización de la puerta de ruido en dichas partes del tema musical. La mayoría de puertas de ruido implementan un ecualizador para la señal de key que alimenta al circuito detector. Este ecualizador normalmente se compone de un filtro paso alto y un filtro paso bajo. El hecho de poder ecualizar la señal que afecta al circuito detector de una puerta de ruido nos va a permitir aislar el sonido del elemento que queremos que dispare la puerta. En cuanto a los ajustes de los tiempos de ataque, mantenimiento y liberación debemos tener en cuenta que no hay ninguna regla respecto a eso. Depende mucho del estilo musical, del tema musical en particular, de cómo fue realizada la toma microfónica, de la acústica de la sala donde se realizó la grabación, del instrumento con el que se grabó y del baterista que grabó.


La compresión:

A medida que se han ido añadiendo más y más pistas en las producciones musicales, se han sumado más y más compresores. Hoy en día, el sonido de las producciones modernas está caracterizado por el uso de numerosos compresores. Sin embargo, como ya sabemos todos, actualmente las producciones musicales no se caracterizan precisamente por su gran dinámica. Mucha gente tiende a sobrecomprimir todo lo que pasa por sus manos. Debemos tener en cuenta que una de las características más importantes de la música es precisamente la dinámica, y que es ella la que en gran medida hace que un tema musical no sea aburrido. Si un tema musical tiene cambios de intensidad será un tema que excite al oyente, mientras que un tema musical totalmente lineal aburrirá hasta los miembros de la propia banda. Es importante por tanto que seamos capaces de mantener la dinámica propia del tema musical que estemos mezclando. Por ejemplo, mucha gente dice que estilos modernos como el rock, metal, … son estilos sin nada de dinámica. Bueno, eso es cierto en gran medida, pero no es del todo correcto. Es cierto que esos estilos de música no se prestan mucho a cambios de dinámica entre las distintas secciones de un tema musical, sin embargo se basan en una base rítmica muy potente. Actualmente se tiende a pasarse con el aplastamiento de dicha base rítmica, lo que provoca que el juego bombo/caja no sea nada excitante y que no nos incite a mover el pie (o la cabeza en el caso de los heavies). Un disco sobrecomprimido con unos niveles altísimos nos dará la sensación de que suena mejor que otro que mantiene la dinámica tan solo si hacemos una comparación A/B entre ellos, y tan solo nos dará esa sensación durante unos segundos, hasta que veamos que el tema musical no tiene sentido artístico. Esto se debe a que cualquier cosa a más volumen que otra va a sonarnos mejor. La razón de esto ha sido ampliamente estudiada en psicoacústica, y se debe a que el sistema auditivo humano no tiene una respuesta lineal, es decir, no oye todas las frecuencias de igual forma. Este fenómeno se explica por medio de las curvas isofónicas. Se toma como referencia la sensación de sonoridad (volumen) que provoca en el oído un cierto nivel a la frecuencia de 1kHz, que es donde el sistema auditivo humano es más sensible. Luego se determina la cantidad de dB SPL (niveles de presión sonora) que se necesitaría en todas las demás frecuencias para provocar la misma sensación de sonoridad. Para ello se usan los fones. Ahora razonemos todo esto y veamos por qué es importante tenerlo bien claro. Imaginad que ponemos nuestro disco favorito en nuestro reproductor musical a un volumen bajo. Puesto que necesitamos mucho más nivel a frecuencias altas y bajas para tener la misma sensación de sonoridad, probablemente dichas frecuencias ni las escuchemos, escuchando tan solo las frecuencias medias. Ahora imaginemos que de golpe subimos el volumen del reproductor musical. Lo que notaremos es que el mismo disco, en el mismo equipo, suena mucho mejor que antes. Eso es tan solo porque ahora somos capaces de escuchar claramente las frecuencias bajas y altas. Imaginemos que ponemos ese álbum a un nivel flojo en el equipo y que inmediatamente después ponemos ese disco favorito con el que hicimos el experimento antes sin mover el volumen del equipo. Nuestro disco favorito sonará mucho peor que el otro, ya que en este caso no estaremos escuchando las frecuencias bajas y agudas, aunque sepamos que ese último disco que hemos puesto suena infinitamente mejor que el otro. ¿Cuál es la solución a esto? Pues es bien fácil, cogemos el mando a distancia del equipo de reproducción y subimos el volumen… de esta forma disfrutaremos de las frecuencias bajas y altas en un disco con dinámica. Hay que tener en cuenta que la gente “no freak” no pierde el tiempo en hacer comparaciones A/B de diferentes discos. Ellos llegan al coche, o al salón de su casa, o encienden el ipod y suben el volumen hasta que se sienten cómodos sin tener en cuenta si este disco suena de primeras con menos nivel que ese otro. La diferencia es que con un disco con dinámica ese oyente “no freak” disfrutará, y con un disco sobrecomprimido será raro que llegue a pasar del tercer corte. La única situación donde no nos podremos librar de la sobrecompresión será cuando un tema musical tenga expectativas de ser difundido por radio o televisión. En este caso, debido a las características técnicas de esos medios de comunicación, es necesario sobrepasarse un poco en el tema de la compresión (tanto en mastering como en mezcla). Pero como todo en esta vida, menos la muerte, tiene fácil solución. La solución es tan simple como hacer mezclas y mastering especial de esos temas.


Tipos de compresores:

A lo largo de la historia se han ido desarrollando diferentes circuiterías en los compresores. Muy al contrario de lo que pasa en el mundo normal, el avance tecnológico no ha supuesto que los modelos antiguos se hayan devaluado y hayan dejado de ser útiles. Muy por el contrario, por ejemplo, un Fairchild 660 de los años 60 nos costaría aproximadamente unos 25.000€. Las diferencias más notables entre los distintos tipos de compresores hacen referencia a su etapa de ganancia. Es decir, lo que caracteriza a un compresor es la forma en la que se produce la reducción de ganancia de la señal de entrada. Esto se debe a que la diferente filosofía de esa etapa de ganancia va a hacer que un compresor suene distinto de otro. Es muy importante por tanto recordar que cada tipo de compresor va a tener un sonido distinto. Es decir, cuandocoloquemos un compresor, y aunque todos realizan la misma operación (reducen la dinámica) es importante saber cómo suena cada uno y conocer sus características perfectamente. Si nos fijamos en los circuitos que determinan los cambios de ganancia en los compresores, podemos hacer la siguiente clasificación: Variable-mu; Fueron los primeros compresores que se implementaron. Este tipo de compresores basan su funcionamiento en un tipo especial de válvula llamada variablemu. La característica especial de esta válvula es que es capaz de cambiar la ganancia de forma dinámica en función de la señal de entrada. Esta característica hace que este tipo de compresores no tengan un control de ratio, ya que el grado de reducción de ganancia es función del nivel de la señal de entrada. Los Fairchild 660 y 670 (versión estéreo) y el Manley Variable Mu son dos ejemplos de este tipo de compresores. FET; La llegada de los semiconductores al mundo de la electrónica supuso en muchos casos la sustitución de las grandes válvulas por pequeños componentes electrónicos llamados transistores. Este tipo de compresores se basan en un tipo especial de transistores llamados transistores de efecto de campo. Este tipo de compresores tienen un sonido muy cristalino y tienen unos tiempos bastante rápidos. Además hay que tener en cuenta que este tipo de compresores suenan mucho mejor que otro tipo de compresores ante altos niveles de reducción de ganancia. También incorporaron al mundo de la compresión un control al que estamos muy habituados: el ratio, aunque en este caso no tenemos un control continuo para el ratio, si no que podemos seleccionar unos pocos valores. El ejemplo clásico de compresor de este tipo es el UREI 1176LN. Opticos; La etapa de ganancia de este tipo de compresores se basa en un sistema lumínico. Por un lado tenemos una fuente de luz (de tipo incandescente o LED) que reacciona ante las variaciones de nivel de entrada. De esta forma cuanto más nivel tengamos más luz vamos a tener. Por otro lado tenemos un elemento fotodetector (en este caso un fototransistor) que es capaz de reaccionar ante esos cambios de luz, reduciendo la ganancia en el compresor en función de la cantidad de luz que tengamos. Este tipo de compresores tienen unos tiempos de ataque y release muy altos, es decir, son compresores muy lentos. Esto se debe al propio circuito lumínico. Tienen un sonido muy característico que ha hecho que sigan siendo muy usados hoy en día. Los ejemplos clásicos de este tipo de compresores son el Teletronix LA-2A y el UREI LA-3A. Ladiferencia entre ambos modelos era que la etapa amplificadora del LA-2A se basaba en válvulas y en el LA-3A se basa en transistores. VCA; Son los compresores “normales” que más habituados estamos a usar. Son los que usan todo el mundo para controlar la dinámica de las pistas individuales cuando no se busca un sonido característico en la compresión. Son compresores de estado sólido (transistores) con los cuales podemos hacer controles muy precisos en la ganancia de la señal de entrada gracias a su respuesta rápida y sus alto grado de solidez en las curvas de transferencia.


¿Por qué usar compresores?
A medida que la tecnología de producción de audio ha avanzado se ha ido introduciendo la posibilidad de usar cada vez más pistas. Hoy en día, gracias a los sistemas digitales por ordenador, casi no tenemos limitación en las pistas a usar. Es normal encontrarse con una mezcla de unas 70 pistas, cada una con su propia dinámica. La primera razón para usar compresores es la de mantener controladas la dinámica de todas las pistas dentro de una mezcla. Otra razón por la que usar compresores es la de poder nivelar las señales. Es normal que un cantante, por muy bueno que sea y por mucha técnica que tenga, no sea capaz de cantar con el mismo nivel todas las frases dentro de una estrofa, todas las palabras dentro de una frase y todas las sílabas dentro de una palabra. Para poder eliminar esos altibajos en la voz es necesario usar compresores. Pero tampoco es bueno pasarse con la compresión, ya que corremos el riesgo de hacer la voz tan lineal en su nivel que hagamos que suene totalmente antinatural y aburrida. Esto mismo puede que sea necesario en otros instrumentos aparte de en la voz. También a veces es necesario aplastar la señal. Hay que tener muy claro cuando es necesario hacer esto, ya que nos vamos a cargar casi toda la dinámica de la pista. No suele ser una cosa que hagamos en muchas pistas dentro de un mismo tema, y tan solo lo debemos hacer cuando sea realmente necesario. Estas son las tres funciones básicas que tiene la compresión en una mezcla, aunque podemos añadir una función extra que nada tiene que ver con el control de la dinámica. Me refiero a la compresión como recurso estilístico. A veces podemos usar los compresores como efecto de sonido, ya que con ellos podemos cambiar el carácter y el timbre propio de una pista. Para ello se suelen usar compresiones bastante bruscas para alterar totalmente el sonido de la misma.


Los controles básicos:

Es muy importante para poder configurar bien un compresor el conocer en profundidad las posibilidades que nos ofrecen sus controles. No solo hablamos de conocer cuantos controles tenemos y que hace cada uno, eso se puede leer en cualquier manual de instrucciones, sino qué provoca el cambio de cada uno de los controles. Lo primero que debemos decir es que cada compresor es distinto. Ya hemos dicho que dependiendo de su circuitería, un compresor va a sonar totalmente distinto que otro. Pero no solo pasa con las distintas filosofías de implementación de los compresores, sino que dentro de los mismos tipos de compresores vamos a tener sonidos bien distintos. Hay que tener en cuenta que cada compresor va a tener diferentes controles. Es verdad que casi todos tienen los mismos, pero algunos ofrecerán más opciones que otros, y también dependiendo de su filosofía de implementación, algunos les faltará algún control básico.
Empecemos con el threshold (umbral); Es el nivel por encima del cual el compresor va a actuar. Sin embargo vemos que hay algunos compresores que no tienen este control, como por ejemplo el LA-2A. En este caso tenemos un threshold fijo. Cuando suceda esto tendremos siempre un control de ganancia de entrada, y a medida que subamos y bajemos dicho control haremos que se supere más o menos el threshold. El fijar correctamente el threshold es algo muy importante, ya que dependiendo la razón por la que queramos aplicar la compresión lo vamos a tener que situar en uno u otro punto del nivel de la señal, por lo que Para configurar el threshold es importante que conozcamos la dinámica de la misma. El primer paso para no comprimir a lo loco por tanto empieza por colocar correctamente el umbral, justo donde necesitemos colocarlo según qué tipo de compresión vamos a aplicar. Veréis como esto tan simple hace que vuestras mezclas empiecen a tener un sentido que antes no tenían. Una vez que hemos visto cómo colocar correctamente el threshold, pasemos al ratio. Con el control de ratio vamos a indicar la relación que queremos que tenga la señal de entrada y la señal de salida para los niveles que estén encima del threshold. Por ejemplo, si tenemos un ratio de 2:1 a la salida todo lo que supera el threshold tendrá la mitad de amplitud, con 4:1 tendremos un cuarto, con 6:1 un sexto.... Es muy importante remarcar que hablamos de todo lo que supere el threshold y no hablamos de toda la señal. Es muy común confundir las cosas en cuanto al ratio. Vayamos ahora con las constantes de tiempo. El tiempo de ataque es el tiempo que tarda el compresor en alcanzar toda la reducción de ganancia, mientras que el tiempo de release es el tiempo que tarda el compresor de pasar de la máxima reducción de ganancia a el estado de ganancia unidad. Aparte de los controles básicos que hemos explicado, muchos compresores ofrecen controles adicionales que nos permiten adecuar aun más el dispositivo en función de la finalidad de la compresión. Algunos compresores nos ofrecen la posibilidad de poder controlar la forma en la que se pasa deganancia unidad al estado de compresión, es decir, la forma en la que se pasa desde un ratio de 1:1 hasta el que hemos configurado en el compresor. Lo normal es encontrarnos con dos posibilidades: hard-knee y soft-knee. Todos los casos que hemos estudiado hasta ahora hacían referencia a una configuración hardknee, en la cual se alcanza el ratio seleccionado en el compresor inmediatamente por encima del threshold. En el modo soft-knee el paso desde el estado de ganancia unidad al del ratio se hace por medio de una curva, de tal forma que se va alcanzando progresivamente el ratio seleccionado desde el 1:1. Hay que tener en cuenta que en este caso la curva afecta a ambos lados del threshold, lo que tiene dos consecuencias. Por un lado la compresión se empieza a aplicar (en sus valores más bajos en esa subida progresiva de ratio) por debajo del threshold. La otra consecuencia es que no se alcanza el ratio seleccionado inmediatamente por encima del threshold. Por tanto dependiendo del nivel de la señal se aplicará un ratio, siendo el ratio aplicado mayor cuanto más sea el nivel de la señal. Función de transferencia con hard-knee y soft-knee Además, hay compresores que nos ofrecen la posibilidad de modificar gradualmente esa pendiente de ratio, como por ejemplo el Dynamics de Sonnox, que ofrece 4 pendientes distintas. Como podéis imaginar, el uso del modo hard-knee ofrecerá una compresión mucho menos sutil que la usada con el modo soft-knee. Tendremos que usar por tanto soft-knee cuando quedamos que la compresión se aplique de la forma más transparente posible sin que sea evidente el uso del compresor. También podemos encontrar en muchos compresores un control de ganancia de salida llamado make-up. Debemos tener en cuenta que una compresión implica una reducción en el nivel de la señal. Por medio de este control de ganancia podemos compensar la pérdida de nivel sufrida en la compresión. Hay que tener muy claro que esta ganancia va a afectar a todo el conjunto de la señal, es decir a los calores no procesados (los que están por debajo del threshold) y a los procesados (los que están por encima del threshold). Algunos compresores pueden tener otros controles distintos que amplíen las posibilidades de ajustes, pueden tener estos mismos controles con nombres distintos y puede que no tengan ninguno de estos controles. Lo mejor es que, teniendo la base aprendida, nos leamos por encima los manuales de nuestros dispositivos para ver sus peculiaridades.


Compresiones paralelas:

Hemos visto hasta ahora cómo la compresión afecta a los transitorios de nuestras señales, ya que lo que hacemos es reducir el nivel de la salida ante las partes de más nivel de la señal. Sin embargo en ocasiones nos interesará comprimir una señal manteniendo los transitorios tal cual están en la señal de entrada. Para hacer esto usaremos la llamada compresión paralela. La compresión paralela consiste en duplicar la señal que nos interesa comprimir, aplicar compresión en esa duplicación y luego mezclar la señal original con la señal duplicada. La forma más extendida de configurar una compresión paralela es tal y como se hace en las mezclas analógicas. Lo que hacemos es enviar la señal original a un bus auxiliar, de tal forma que cualquier cambio en la señal original varía la señal que estamos enviando al bus auxiliar. ¿Donde colocar las cosas?


Órden de los factores:

Hay mucha gente que se pregunta donde colocar el compresor, ¿antes o después de la ecualización? Para contestar a esto hay que tener en cuenta que una compresión va a cambiar el balance frecuencial de la señal. Además las frecuencias bajas excitan más un compresor que las frecuencias altas. Si tenemos en cuenta estas dos cosas podemos suponer que si colocamos el compresor antes del ecualizador, las frecuencias que debemos eliminar en la señal van a estar influyendo en la compresión y que si colocamos el ecualizador antes de la compresión, dicha compresión nos va a alterar el balance frecuencial que hemos definido en el ecualizador. Para evitar esto lo que se suele hacer es ecualizar en dos etapas. En la primera etapa de ecualización, se coloca un ecualizador que sea transparente para hacer el filtrado paso alto y eliminar las resonancias que crea oportunas. Una vez que se ha limpiado la señal se coloca el compresor y se ajusta la dinámica de la señal. Una vez hecha la compresión se coloca a continuación un ecualizador para determinar el balance frecuencial de la señal. Si lo hacemos de esta forma, el ecualizador que determina el balance frecuencial no estará influenciado por la compresión. Si no lo hiciéramos de esta manera, cualquier cambio en la ecualización provocaría un cambio en la compresión, por lo que deberíamos ajustar tanto el ecualizador como el compresor ante cualquier modificación. Hay que tener en cuenta que no debemos tomar como algo prefijado por ninguna ley el orden de colocación de los ecualizadores y compresores, si no que debemos hacer la colocación de la manera que más nos convenga en cada situación. Además no hay que tener miedo en colocar el número de compresores o ecualizadores que creamos oportunos. Cuando mezclemos debemos ser libres de romper reglas para conseguir lo que queremos.